
����������		 ��
���� ������
 ������ �����	��	������

�������������� �!�!� �

�"#$%&$'(�)*+,-.-/')012-""3,'*#%'-,�)*+,-.-/')0#,(�%#,(#$(0444
55657589:;<=>?5@ABC:>D5EFGAH>@5I=;9J>75KLGGMNNA>757MGAJC>A:O85P5QA:GHM RST

2-"U$)+),0'V)�%3(W-X�',/.)�!+#0)�2�Y2!-Z)$�#*%-$2-$$)*%)(2-,V)$%)$0['%+�'/+��$)\3),*W]0-.#%'-,4444444444444444444444
555K5@C:;B>@5@C:;B>̂57BA:O=A>A:OE5̂N_QAOOAO R̀a

�*+')V',/b)")%'*�(#U%#c'.'%WcWb)#,0-X�/),%�d#0)(b#*+',)e)#$,',/444
5585̂GAfgF=A>h5i57AOM:Aj>65kFCA>A:OI5iLlFmKANNMjJM= RRn

��3$V)W-,�UU.'*#%'-,0-X�/),%�)*+,-.-/W',],(30%$'#.!$-*)002-,%$-.44444444444444445555555555555555i5iMJm;M=A:O85PFNAHop Rna
�$#*%'-,#.�$()$�W0%)"0',],(30%$'#.�3%-"#%'-,q��3$V)W4444444444444444444444444444444444555555555555555555555555555555555i5r5IsM RtS
2-"U#$#%'V)�%3(W-XY)$'V#%'V)�$))�U%'"'u#%'-,�./-$'%+"0444444444444444555555555555555v5PBAf>̂5iANC:FpjHC>A:OD5KA=JGmAH RTS
!-Z)$��Z#$)�W0%)"Y)0'/,-X['$).)00�),0-$w)%Z-$x01!-Z)$�0%'"#%'-,#,(!-Z)$!$-y.',/�%$#%)/')0z{:|CJMOPAgM=}4444444444
555h5QAAjM>h5i5iFNC:A>A:O?5?CMJ=CGB ~a�

b#,#/',/!$-*)00b-().2-"U.)�'%W�'#�c0%$#*%�W,%#�b-('y*#%'-,0444
55555555555555555555555555555555555i5kA�FjA>P5�FBMO>h5iM:ONC:;>̂5Q5i5JM=QFsjJMOM>Q5̂5�MC�M=j>A:O�5i5P5|A:OM=̂ANjJ ~�̀

�,%)U'0)�W0%)"01�%#%)�-X�%+)��$%#,(�3%3$)�$),(0444444444444444444444444444444444444444555555555555555555555555555555555555555k5?5�L ~�a

 �&�e� !�!� �

�2-"U$)+),0'V)�-.3%'-,X-$Y)%)$"','0%'*)U.#WY)c3//',/-X�-X%!e2�UU.'*#%'-,044
55Q5P=�BFsM=>�5@GBAJm>75�C=JB>A:OQ5i<jjM:�<GH ~̀�

��U$)00',/2-#$0)�&$#',Y)U),(),*')0�"-,/�#0x0',�+#$)(b)"-$W!$-/$#"04444445555555P5kA=jM:>@5EA=NjjF:>A:Oh5iAOjM: ~RS
�,*)$%#',%W� -c30%Y)0'/,-X],%)$V#.�WU)�S�3uuWe-/'*2-,%$-..)$X-$Y).%#!#$#..). -c-%4444444455555555�5kC:OAA:Oi5iA:CG ~~�
�+)&b!e�2-,%$-..)(�U%'*#.w)%Z-$x0#0],(30%$W2-""3,'*#%'-,!.#%X-$"4444444444444444444444455555555555555555555555h5EF=:CAH ~n�
!)$X-$"#,*)-X#)#.��'")�%+)$2��b#0%)$�,()$e',3�4444444444444444455555555555555555i57M=MCA>{575KM=JFNFJJC>A:O@5@GA:mCF ~nT

���

&3)0%�('%-$'#.4455k5kFKMNNFA:O85�=M� ~tt

�!�2]�e��2�]�w!�!� �

)#.��'")b-().',/X-Y')*%e-#(2-,%$-.',2Wc)$�!+W0'*#.!-Z)$�W0%)"044444444455555555D5�AGGBC:MJJCA:Oi5k5?MNNA6MOF|A ~tT
�-Z%-�**)00�#*%-$W�.--$],X-$"#%'-,�0',/],%)$,)%�)*+,-.-/')0#,(&#%)Z#W044444444444455555555555D5@ALJM=A:Oi5kF�AjBF| ~TT
�w-V).�%#,(#$(X-$�--%Z)#$],(30%$'#.b#*+',)$')0444444445555555585?A:MjM>@5?LNCF>i58CAGBM=F>�5kMgF=AJC>A:Ov5vAmmCGA=C n��
�-X%Z#$)�3UU-$%X-$d3'.(',/�3%-"#%'-,)\3'$)"),%0�,/',))$',/q�,�UU.'*#%'-,-X�)"#,%'*[)c�)*+,-.-/')0',
�3%-"#%'-,444555@5�L:OMA:Ô 5�A� nS�

�)"#,%'*�d#0)(�,+#,*)"),%-X]���]�2�̀R̀����]d��w �%#,(#$(X-$d3'.(',/�3%-"#%'-,444
555i5�LJA>�5@GCFjGCA>I5?C@GCAjGCF>A:O85kFjMJF n��

�3,*%'-,#.�,#.W0'0-Xb#,3X#*%3$',/��)*3%'-,�W0%)"Y'0%$'c3%'-,444444444444444444444555555555555555555555̂5K=AJLHBC:A:OD5@ALJM= ǹa
�Y3#.!$-/$#""',/b-().X-$Y'0%$'c3%)()#.��'")¡#V#4444444444455555555555P5KAjA:JA_6AN>i58A=G¢A_6ANNj>A:O{5IjJ£|Mm_̂�=Mj nRa
�)$V'*)��$'),%)(],X$#0%$3*%3$)%-�3UU-$%%+)Y)U.-W"),%-X�V-.V#c.)!$-(3*%'-,�W0%)"0444
555857¤:OCOF>̂5�57FNFf�F>h5KA=AJA>A:O�5hAffMj nRT

]�2~�̀TT#0�,#c.)$-XY'0%$'c3%)(#,(],%)..'/),%�3%-"#%'-,1�%#%)�-X�%+)��$%)V')Z44444444444444444445555555555555555555656�AJHC: n~t

Sa��]wY� 44455�V#'.#c.)-,.',)#%+%%U1��')))�U.-$)4')))4-$/

olekmali
Oval

592 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 4, NOVEMBER 2011

Comparative Study of Derivative Free
Optimization Algorithms

Nam Pham, Student Member, IEEE, A. Malinowski, Senior Member, IEEE, and T. Bartczak

Abstract—Derivative free optimization algorithms are often
used when it is difficult to find function derivatives, or if finding
such derivatives are time consuming. The Nelder Mead’s simplex
method is one of the most popular derivative free optimization
algorithms in the fields of engineering, statistics, and sciences.
This algorithm is favored and widely used because of its fast con-
vergence and simplicity. The simplex method converges really well
with small scale problems of some variables. However, it does not
have much success with large-scale problems of multiple variables.
This factor has reduced its popularity in optimization sciences
significantly. Two solutions of quasi-gradients are introduced to
improve it in terms of the convergence rate and the convergence
speed. The improved algorithm with higher success rate and
faster convergence which still maintains the simplicity is the key
feature of this paper. This algorithm will be compared on several
benchmark functions with other popular optimization algorithms
such as the genetic algorithm, the differential evolution algorithm,
the particle swarm algorithm, and the original simplex method.
Then, the comparing results will be reported and discussed.

Index Terms—Simplex method, genetic algorithm (GA), dif-
ferential evolution algorithm (DE), particle swarm optimization
(PSO), quasi-gradient method.

I. INTRODUCTION

T HE Nelder Mead’s simplex method [1] is a popular
derivative free optimization algorithm and is a method of

choice for many practitioners. It is the prime choice algorithm
in the Matlab optimization toolbox. It converges relatively
fast and can be implemented relatively easily compared with
other classical algorithms relying on gradients or evolutionary
computations, etc. Unlike gradient methods [2], [3], the sim-
plex method can optimize a function without calculating its
derivatives, which usually require a lot of computing power
and are expensive in high-dimensional problems as well. This
property makes it more advantageous than others.

Although the simplex method is simple and robust in small
scale optimization, it easily fails with large-scale optimiza-
tion. In order to become a reliable optimization tool, it has
to overcome this shortcoming by improving its convergence
rate and convergence speed. This literature will give some new

Manuscript received August 05, 2011; revised August 13, 2011, August
13, 2011, August 16, 2011; accepted August 20, 2011. Date of publica-
tion September 06, 2011; date of current version November 09, 2011.
Paper no. TII-11-393.

N. Pham is with the Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849-5201 USA (e-mail: nguyehu@auburn.
edu).

A. Malinowski is with the Department of Electrical and Computer Engi-
neering, Bradley University, Peoria, IL 61525 USA.

T. Bartczak is with the Department of Electronics and Telecommunications,
University of Information Technology and Management, Rzeszów 23456,
Poland .

Digital Object Identifier 10.1109/TII.2011.2166799

insights on why the simplex method may become inefficient in
high dimensional optimization because of its lack of gradient
information. This approach explains the low convergence rate
without concerning its descent property when the objective
function is uniformly convex presented in other literature [4],
[5]. This paper will particularly present how to improve the
simplex method by combining with two different quasi-gradient
methods. The improved algorithm without complex mathematic
computations can optimize multidimensional problems with
higher success rate and faster convergence speed.

The genetic algorithm (GA) [6], the differential evolution al-
gorithm (DE) [7], [8] and the particle swarm algorithm [9], etc.,
are the other popular derivative free optimization tools which
are widely applied and familiar by researchers and practitioners
[10]–[12]. These algorithms can perform well in both a global
and local search and have the ability to find the optimum so-
lution without getting trapped in local minima. This capability
is mostly lacked by local search algorithms such as the cal-
culus-based algorithms or the simplex method. The big issue
of global search algorithms is the computational cost which
often makes their convergence speed much slower than local
search algorithms. The particle swarm optimization (PSO) is a
kind of global search technique. It is a probabilistic technique
which is different from the deterministic and stochastic tech-
niques. Compared with the GA and the differential evolution
algorithm, the PSO is simpler in term of computations because
its crossover and mutation operation are done simultaneously
while the crossover and mutation operation of the GA and the
differential evolution algorithm are done between each pair in
the whole population. With improvements contributed in this
paper, the simplex method can be considered as another optional
optimization algorithm which can work much more efficiently
than other well-known derivative free optimization algorithms
in many different fields of engineering or sciences.

This paper is organized as follows. Section II reviews several
well-known derivative free optimization algorithms and the
simplex algorithm. Section III presents the improved simplex
method with quasi-gradient search. Section IV presents op-
timization functions, experimental results, and discussions.
Section V is the conclusion.

II. OVERVIEW OF ALGORITHMS

A. Genetic Algorithm (GA)

The GA is invented to mimic the natural behavior of evolu-
tion according to the Darwin principle of survival and reproduc-
tion [13]. Unlike calculus-based methods, GA does not require
derivatives, and it also has the ability to do a parallel search in
the solution space simultaneously. Therefore, it is less likely

1551-3203/$26.00 © 2011 IEEE

PHAM et al.: COMPARATIVE STUDY OF DERIVATIVE FREE OPTIMIZATION ALGORITHMS 593

to get trapped in local minima. Like the particle swarm algo-
rithm and the differential evolution algorithm, GA starts by its
initial population, and each individual is called a chromosome
to represent a solution. During each generation, chromosomes
will be evaluated according to their fitness values and evolved to
create new chromosomes for the next generation. New childish
chromosomes can be produced in two different ways either by
emerging from two parental chromosomes in current genera-
tion with the crossover operator or by modifying chromosomes
with the mutation operator. In order to maintain the population
size, all chromosomes have to go through the natural selecting
process. The chromosomes with better genes or better fitness
will have higher probability to go to the next generation and
other ones with worse genes is more likely to be rejected. This
procedure is repeated until the best chromosome close to the op-
timum solution can be obtained. Another big advantage of GA is
that it can be applied in different domains, not just only in opti-
mization problems. However, it still has the limitation of prema-
ture convergence and low local convergence speed. Therefore,
GA is usually improved by research scholars [14], [15].

B. Differential Evolution Algorithm (DE)

The differential evolution algorithm (DE) was introduced by
Storn and Price in 1997 [7], [8]. Today it becomes one of the
most robust function minimizers with relatively simple self-
adapting mutation and is able to solve a wide range of optimiza-
tion problems. The whole idea of DE is generating a new scheme
to compute trial parameter vectors. These new parameter vec-
tors are computed by adding the weighted difference between
two population members to a third one. If the resulting vector
has a lower objective function value than a predefined popula-
tion member, the newly generated vector will replace the vector
with which it was compared. Through time, this algorithm has
been adapted to increase its efficiency. In 2007, a new concept
of multiple trial vectors [16] was introduced into this algorithm.
This approach aims to make DE able to converge for a broader
range of problems because one scheme of calculating trial vec-
tors may work well with certain type of problems but may not
work with other ones. Another approach was proposed where
the choice of learning strategies and the two control parameters

(weighing factor) and (crossover constant) are dynam-
ically adjusted and also made a significant improvement [17].
Recently, an adaptive differential evolution algorithm with mul-
tiple trial vectors can train artificial neural networks successfully
and shows its competitive results with the error back propaga-
tion algorithm and the Lavenberg Marquardt algorithm [18].

C. Particle Swarm Optimization (PSO)

The PSO is a concept that simulates the social swarm be-
havior of a flock of birds or a school of fish in searching for
food [19]. The main concept is to utilize the intercommunica-
tion between each individual swarm with the best one to update
its position and velocity. This algorithm operates on a randomly
created population of potential solutions and searches for the
optimum value by creating the successive population of solu-
tions. PSO sounds similar to the differential evolution algorithm
or the GA in term of its selecting strategy of the best child (or
the best swarm), but it is really different. In this algorithm, the

potential solutions so called swarm particles are moving to the
actual (dynamically changing) optimum in the solution space.
Each swarm has its own location, best location, velocity, and fit-
ness. In each generation, each swarm will contact with the best
swarm and follow him to update its own information. During its
motion, if some swarms find better positions by comparing with
their own fitness, they will automatically update themselves. In
case there is a swarm finding the new best position, that swarm
will be considered immediately as the current best. Because of
its global search ability and fast convergence speed compared
with other global search algorithms, PSO is applied widespread
in optimization.

D. Nelder Mead’s Simplex Algorithm

The simplex method [1] is a direct downhill search method.
It is a simple algorithm to search for local minima and appli-
cable for multidimensional optimization applications. Unlike
classical gradient methods, this algorithm does not have to cal-
culate derivatives. Instead it creates a geometric simplex and
uses this simplex’s movement to guide its convergence. A sim-
plex is defined as a geometrical figure which is formed by
vertices, where is the number of variables of an optimiza-
tion function, and vertices are points selected to form a simplex.
In each iteration, the simplex method will calculate a reflected
vertex of the worst vertex through a centroid vertex. According
to the function value at this new vertex, the algorithm will do
all kinds of operations as reflection or extension, contraction, or
shrink to form a new simplex. In other words, the function values
at each vertex will be evaluated iteratively, and the worst vertex
with the highest function value will be replaced by a new vertex
which has just been found. Otherwise, a simplex will be shrunk
around the best vertex, and this process will be continued until
a desired minimum is met. Moreover, the convergence speed of
this algorithm can also be influenced by three parameters
(is the reflection coefficient to define how far a reflected point
should be from a centroid point; is the contraction coefficient
to define how far a contracted point should be when it is con-
tracted from the worst point and the reflected point in case the
function value of the reflected point is smaller than the function
value of the worst point; is the expansion coefficient to define
how far to expand from the reflected point in case a simplex
moves on the right direction). Depending on these coefficients

, the volume of a simplex will be changed by the opera-
tions of reflection, contraction, or expansion respectively. The
Nelder Mead’s simplex method can be summarized as follows
and more details can be found in the original paper [1].

• Step 1: get , select an initial simplex with random
vertices and calculate their function values.

• Step 2: sort the vertices of the current sim-
plex so that in the ascending order.

• Step 3: calculate the reflected point
• Step 4: if

a) calculate the extended point ;
b) if , replace the worst point by the extended

point ;
c) if , replace the worst point by the reflected

point .
• Step 5: if :

594 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 4, NOVEMBER 2011

a) if , replace the worst point by the reflected
point .

b) if :
(b) if : calculate the contracted point

;
(c) if then shrink the simplex;
(c) if then replace the worst point
by the contracted point ;

(b) if : replace the worst point by the
reflected point .

• Step 6: if the stopping conditions are not satisfied, the al-
gorithm will continue at Step 2.

Compared with gradient methods, the simplex method is sim-
pler in term of mathematic computation, which is normally more
complicated to calculate derivatives and requires more com-
puting cost as well. Unlike the GA or the differential evolution
algorithm, there is no operation of mutation or crossover in this
algorithm. In each iteration, only one new vertex is computed;
therefore, it converges much faster. These advantages are key
features which motivate authors of this paper to improve the
simplex algorithm and make it become a useful optimization
tool for engineers, scientists, etc., in many different types of ap-
plications [20], [21].

III. IMPROVED SIMPLEX METHOD WITH QUASI-GRADIENTS

Although the simplex method was proposed a long time ago
(1965) [1] and has not had much success in optimizing large-
scale problems [22], it is still a method of choice because of
its simplicity. As a matter of fact, its necessary improvement
of convergence speed and convergence rate is still an attractive
research topic in the area of computing and optimization. For
this purpose, many authors have proposed different ideas to ad-
dress this issue. Gao and Han [23] proposed an implementa-
tion of the simplex method in which the expansion, contraction,
and shrinking parameters depend on the dimension of optimiza-
tion problems. Another author, Torczon [24], suggested that this
poor convergence may be due to the search as direction becomes
increasingly orthogonal to the steepest descent direction, etc.
Without any satisfactory convergence theory, there is no doubt
that the effect of dimensionality should be extended and investi-
gated more. Clearly, this is one of the main reasons restricting its
convergence capability. This paper is another effort to improve
the simplex algorithm with two simple solutions, which are dif-
ferent from other explanations in the literature. Furthermore, the
simplicity is also the main goal of authors to keep this algorithm
robust and different from other optimization algorithms.

As presented shortly in the overview, the simplex algorithm
converges based on the formation of the geometric simplex and
its movement to find local minima. During optimization, this
algorithm assumes that the direction to local minima can be
found by the operations of reflection, contraction, and expan-
sion without caring about the gradient. In other words, the dy-
namic change of a geometric simplex through these operations
is utilized to approximate better vertices along the gradient di-
rection. However, this assumption is not always true in reality,
and that explains why the simplex algorithm fails easily with
high dimensional optimization problems. Instead of calculating

the reflected vertex as the original algorithm proposed, a new
way is presented in the next two paragraphs by combining it with
two different quasi-gradient methods respectively. These two
quasi-gradient methods can be assumed as two approaches to
approximate gradients by using numerical analysis rather than
analytical analysis. With this modification, the improved algo-
rithm converges much faster and more reliably than the original
one.

To maintain the simplicity, two quasi-gradient methods are
presented to approximate gradients [25]. The first method uses
an extra vertex in a simplex. Its accuracy depends on the lin-
earity of a function in the vicinity of a simplex. However, its
computing cost does not increase significantly when the size
of optimization problems becomes larger. The second method
uses a hyperplane equation formed from a simplex. This method
can estimate gradients more accurately; therefore, it converges
faster. However, its high computing cost of inverse matrixes
does not have much advantage with the large size of optimiza-
tion problems.

A. Quasi-Gradient Method Using an Extra Vertex

This method approximates gradients of a dimensional
plane created from a geometrical simplex. First, it selects an
extra vertex composed from vertices in a simplex and
then combines this vertex with other selected vertices in the
same simplex to estimate gradients. Its steps are presented as
follows.

Assume an optimized function .
• Step 1: Initialize a simplex with random vertices

.
• Step 2: Select an extra vertex with its coordinates com-

posed from out of vertices in a simplex. In other
words, its coordinate is a diagonal of the matrix .

(1)

• Step 3: Approximate gradients based on the extra vertex
with vertices in the selected simplex.

• Step 4: Calculate the new reflected vertex based on the
best vertex and the approximate gradient . Parameter

is the learning constant or step size

(4)

PHAM et al.: COMPARATIVE STUDY OF DERIVATIVE FREE OPTIMIZATION ALGORITHMS 595

• Step 5: If the function value at is smaller than the func-
tion value at , it means that points to the same di-
rection as the gradient then can be expanded to

(5)

B. Quasi-Gradient Method Using a Hyperplane Equation

This quasi-gradient method forms a -dimensional
plane from vertices in a simplex and then uses matrix
calculations to approximate gradients. This method can be
described as follows.

Assume an optimized function .
• Step 1: Initialize a simplex with random vertices

.
• Step 2: A -dimensional hyperplane formed from this

simplex is assumed to have the approximate equation

(6)

• Step 3: Substitute each vertex into the hyperplane equation,
so there will be equations, as shown in (7) at the
bottom of the page, where

.
• Step 4: Calculate the approximate gradient matrix by

writing the above multi-equations in the matrix formula

(8)

(9)

(10)

• Step 5: Calculate the new reflected vertex

(11)

• Step 6: Calculate the new expanded vertex

(12)

The improved algorithm with quasi-gradient search is similar
to the original simplex method except that it has to approximate
gradients to search for its reflected vertex. In other words, its
convergence will rely on the gradient direction through the new

reflected vertex rather than the reflected vertex calculated
through the centroid vertex proposed by the original simplex
algorithm. The improved simplex method with quasi-gradient
search can be applied successfully in synthesizing lossy filters,
and training artificial neural networks, etc. [26].

IV. OPTIMIZATION FUNCTIONS, EXPERIMENTAL RESULTS

AND DISCUSSIONS

All algorithms are tested on a set of functions with different
levels of difficulty. These functions are well-known uncon-
strained optimization functions in literature. A large number
of problems are relatively adequate to prove the reliability
and robustness of these algorithms. It also warrants that the
improved algorithm is much better than the original algorithm
overall, not just better in a small set of problems. Algorithms
are tested on a wide range not close to solutions to address
on their convergence capability. Therefore, it is much more
satisfactory when starting points are generated randomly. Un-
like other publications in literature, we do not use the standard
starting points for a certain function to test algorithms because
it is fairly hard to measure their reliability and robustness or
to differentiate between similar algorithms in this case. The
use of initial points farther away from solutions frequently
reveals dramatic differences of algorithms such as success
rate, computing time, etc. These measurements will reflect the
efficiency of each algorithm.

To evaluate the ability of these algorithms to solve problems,
we measure their success rate and computing time with a list of
benchmark functions from (1)–(16). These functions are typical
ones usually used in testing local minimum optimization algo-
rithms and have minima at “zero.”

1) De Jong function [1], [27]–[29]

2) De Jong function with moved axis [30]

.
3) Quadruple function [31]

4) Powell function [1], [28]

(7)

596 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 4, NOVEMBER 2011

5) Moved axis Parallel hyper-ellipsoid function [30]

6) Zarakov function [32]

7) Schwefel function [32]

8) Sum of different power function [30]

9) Step function [27]

10) Box function [29]

where is a const.
11) Rosenbrock function [1], [27], [28], [33]

12) Biggs Exp6 function [4], [28]

where

13) Kowalik and Osborne function [27], [28], [33]

where are vectors in [27].
14) Colville function [27]

15) Wood function [4], [28], [33]

16) Bard function [4], [28]

where are vectors in [28].
With this significant improvement, the improved simplex

method can be a useful optimization tool to replace for other
popular algorithms as the GA or the particle swarm algorithm,
etc. All evaluated algorithms are written in Matlab, and all
experiments are tested on a PC with Intel Quad. In order to
compare performances of these algorithms, some assumptions
are set: algorithms start with a random initial variables in the
range of [, 100]; dimension of all benchmark problems is
20; maximum iteration is equal to 100 000; desired error prede-
fined to terminate algorithms is equal to 0.001; coefficients of
the simplex method , learning constant

. In addition, the GA, the differential evolution algorithm,
and the PSO each has 20 members in its population. These
algorithms use the same default values as the ones written in
the standard Matlab toolboxes. Because of timing cost to test
the GA and the differential evolution algorithm, all results
in Table I are the average values calculated over 25 random
running times.

In this simulation, it is unnecessary to verify how the dimen-
sionality affects the simplex algorithm. Therefore, one experi-
ment with 20 dimensions is conducted, and only the algorithm
using an extra vertex (SIM1) is selected to compare because
of its simple computations relative to other derivative free opti-
mization algorithms.

• The Genetic Algorithm (GA): There are only two cases
the GA can obtain 100% success rates. Although the GA
cannot obtain high success rate as the improved simplex
method, but it still shows its convergence ability in 5 out
of 13 problems. However, this algorithm cannot converge
as fast as the improved simplex method or the PSO does.
There are 8 out of 13 problems, the GA cannot converge.
Even the data is not displayed in Table I, but the GA shows
its convergence trend in this experiment if a number of
generations is increased. Among four derivative free opti-
mization algorithms discussed here, the GA is the slowest
one. This can be explained by its complex mutation and
crossover operations.

• The Differential Evolution Algorithm (DE): This algorithm
does not converge really well with these optimization func-
tions. There are five cases, it converges with high suc-
cess rates. And there are two cases, it converges with low
success rates. It cannot converge nearly half of problems.
In order to optimize these functions, this algorithm needs
more iterations. Therefore, it will take longer to solve the

PHAM et al.: COMPARATIVE STUDY OF DERIVATIVE FREE OPTIMIZATION ALGORITHMS 597

TABLE I
EVALUATION OF AVERAGE ERROR, ERROR STANDARD DEVIATION, AND COMPUTING TIME OF 20-DIMENSIONAL FUNCTION

TABLE II
EVALUATION OF SUCCESS RATE AND COMPUTING TIME OF TEN-DIMENSIONAL FUNCTIONS

same problems. The DE converges faster than the GA, but
it is much slower than the improved simplex algorithm.

• The Particle Swarm Algorithm: The particle swarm algo-
rithm converges relatively fast; however, it does not have
enough consistency. There are four cases, it fails to con-
verge with no matter of a number of generations. There is
one case that it converges with a really low success rate.
Even it converges more than half of cases, but it is still rel-
atively slower and has lower success rate than the improved
simplex method. However, the particle swarm algorithm is
much faster than the differential evolution algorithm and
the GA in term of convergence speed.

• The Improved Simplex Method: From the experimental re-
sults in Table I, we can conclude that the improved sim-
plex method converges much faster and more efficiently
than the GA, the differential evolution algorithm, and the
particle swarm algorithm in local minimum optimization.
This is reflected through its higher success rate and less
computing time for each testing function. It can get op-

timum solutions more than 75% of problems with 100%
success rate. In other 25% of problems, its success rates
are around 50%, but it is still much better than other algo-
rithms. In term of computing time, this algorithm particu-
larly outclasses the others. Its convergence speed is at least
from ten to 100 times faster.

Obviously, the improved simplex algorithm with this sig-
nificant modification can be an alternative tool to replace
efficiently for other optimization tools. This algorithm is a
direct search method which is free of derivative calculation.
Therefore, it can converge much faster and higher success rate
than algorithms based on evolutionary computations such as
the GA, etc.

The next experiments are conducted with the same as-
sumptions as the last one: algorithms start with a random
initial simplex in the range of [, 100]; dimensions of all
benchmark problems are equal to 10, 15, and 20, respectively;
maximum iteration is equal to 100 000; target error prede-
fined to terminate algorithms is equal to 0.001; coefficients

598 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 4, NOVEMBER 2011

TABLE III
EVALUATION OF SUCCESS RATE AND COMPUTING TIME OF 15-DIMENSIONAL FUNCTIONS (NOTE: “-”: NOT TESTED)

TABLE IV
EVALUATION OF SUCCESS RATE AND COMPUTING TIME OF 20-DIMENSIONAL FUNCTIONS

, learning constant . All results
in Tables II–IV are average values calculated over 100 random
running times.

The comparisons between the simplex algorithm and its im-
proved versions are summarized above. In these simulations all
algorithms are still compared in terms of the success rate and
computing time. While the success rate is used to describe their
reliability, computing time reflects how fast these algorithms
can converge. Three different sizes of functions 10, 15, and
20 are also tested, respectively, for the purpose of comparing
their robustness, and it is also used to verify how the simplex
method is affected by its dimensionality. From Tables II–IV,
we can draw a conclusion that the improved algorithm shows
its better performance than the original simplex method in terms
of both success rate and computing time. The experimental re-
sults also tell that the improved simplex method, using a hy-

perplane equation, converges faster than the one using an extra
vertex in most cases. It even requires more computations to ap-
proximate the gradient matrix. There are only two cases (Box
function and Biggs Exp6 function), the method of a hyperplane
equation shows its worse results than the method of an extra
vertex. When the problem size increases, the simplex method
starts getting worse and is unable to converge. In Table II of
ten-dimensional functions, the simplex algorithm converges rel-
atively well although it does not have a high success rate in sev-
eral cases. However, these numbers are still good enough and
acceptable because of its fast convergence. When the size in-
creases to 15 in Table III, its convergence rate suddenly drops
down dramatically, and it totally fails in 20-dimensional prob-
lems or higher (Table IV); whereas, the improved algorithm still
converges consistently well. It has 100% success in 9 out of 14
problems and over 40% success rate in 3 out of 14 problems.

PHAM et al.: COMPARATIVE STUDY OF DERIVATIVE FREE OPTIMIZATION ALGORITHMS 599

There is only one case of Box function that the improved algo-
rithm cannot obtain a good success rate. Even with 20-dimen-
sional problems, this algorithm is still able to converge very fast
when its minimum and maximum computing time is less than
1 (s) and 10 (s), respectively. Comparing these two algorithms,
we can conclude that the improved algorithm using quasi-gra-
dients can define its moving direction more precisely. That is
the reason why the improved algorithm converges much better.
With the same random choice of initial vertices, the improved
simplex method usually gets a higher convergence rate and less
computing time than the original simplex method. Even this al-
gorithm is combined with the quasi-gradients, it does not face
any difficulty to find function derivatives, and particularly its
finding such derivatives is not time consuming as classical al-
gorithms based on gradients.

V. CONCLUSION

Upon the comparative study of derivative free optimizations
algorithms, it seems like the improved simplex method has
more advantages than other algorithms based on evolutionary
computations. Their comparison was summarized in Table I.
The improved simplex algorithm with quasi-gradient search
is presented with details in this paper. It is a derivative free
optimization algorithm with two simple approaches of gradient
search described. This algorithm can be used when it is difficult
to find function derivatives, or if finding such derivatives are
time consuming. This algorithm was tested over several bench-
mark problems of local minimum optimization, and shows its
better performance than the original simplex method in terms
of both convergence rate and computing time (Tables II–IV).
Therefore, it shows a great deal of large-scale optimization
problems and has been applied successfully in synthesizing
filters and training neural networks. This algorithm also shows
very promising results compared with other well-known evo-
lutionary algorithms independent of gradients as the GA,
the particle swarm algorithm, or the differential evolution
algorithm, etc. it outperforms these algorithms with much
higher success rate and at least ten to 100 times faster. The
experiments tell that this algorithm is an effective alternative
for other optimization algorithms. However, the modified algo-
rithm presented in this paper can be improved by using other
numerical techniques to calculate more accurate gradients. By
using the analytical gradient instead of the quasi-gradient for
some optimization problems, the improved simplex method can
converge at least ten times faster. These types of improvements
can be a good topic of future research.

REFERENCES

[1] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, pp. 308–313, 1965.

[2] K. Bredies, D. A. Lorenz, and P. Mass, “A generalized conditional
gradient method and its connection to an iterative shrinkage method,”
Comput. Optim. Appl., vol. 42, no. 2, pp. 173–193, 2009.

[3] K. Levenberg, “A method for the solution of certain problems in least
squares,” Quart. Appl. Mach., vol. 2, pp. 164–168, 1944.

[4] A. Burmen, J. Puhan, and T. Tuma, “Grid restrained Nelder-Mead al-
gorithm,” Comput. Optim. Appl., vol. 34, no. 3, pp. 359–375, 2006.

[5] C. T. Kelly, “Detection and remediation of stagnation in the Nelder-
Mead algorithm using a sufficient decrease condition,” SIAM J. Opt.,
vol. 10, pp. 43–55, 2000.

[6] W. Lenwari, M. Sumner, and P. Zanchetta, “The use of genetic algo-
rithms for the design of resonant compensators for active filter,” IEEE
Trans. Ind. Electron., vol. 56, no. 8, pp. 2852–2861, Aug. 2009.

[7] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Glob.
Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997.

[8] K. Price, “An Introduction to Differential Evolution,” in New Ideas
in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. London,
U.K.: McGraw-Hill, 1999, pp. 79–108.

[9] B. Biswal, P. K. Dash, and B. K. Panigrahi, “Power quality distur-
bance classification using fuzzy C-means algorithm and adaptive par-
ticle swarm optimization,” IEEE Trans. Ind. Electron., vol. 56, no. 1,
pp. 212–220, Jan. 2009.

[10] S.-H. Hur, R. Katebi, and A. Taylor, “Modeling and control of a plastic
film manufacturing web process,” IEEE Trans. Ind. Inform., vol. 7, no.
2, pp. 171–178, May 2011.

[11] C. H. Lo, E. H. K. Fung, and Y. K. Wong, “Intelligent automatic fault
detection for actuator failures in aircraft,” IEEE Trans. Ind. Inform.,
vol. 5, no. 1, pp. 50–55, Feb. 2009.

[12] F. Tao, D. Zhao, Y. Hu, and Z. Zhou, “Resource service composition
and its optimal-selection based on particle swarm optimization in man-
ufacturing grid system,” IEEE Trans. Ind. Inform., vol. 4, no. 4, pp.
315–327, Nov. 2008.

[13] P. Zanchetta, P. W. Wheeler, J. C. Clare, M. Bland, L. Empringham,
and D. Katsis, “Control design of a three-phase matrix-converter-based
AC-AC mobile utility power supply,” IEEE Trans. Ind. Electron., vol.
55, no. 1, pp. 209–217, 2008.

[14] K. Hangyu, J. Jing, and S. Yong, “Improving crossover and mutation
for adaptive genetic algorithm,” Comput. Eng. Appl., vol. 12, pp.
93–96, 2006.

[15] L. H. Cheng and W. Y. Ping, “Genetic algorithm with a hybrid
crossover operator and its convergence,” Comput. Eng. Appl., vol. 16,
pp. 22–24, 2006.

[16] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[17] E. M. Montes, C. A. Coello, J. V. Ryes, and L. M. Davila, “Mul-
tiple trial vectors in differential evolution for engineering design,” Eng.
Optim., vol. 39, no. 5, pp. 567–589, Jul. 2007.

[18] A. Slowik, “Application of an adaptive differential evolution algorithm
with multiple trial vectors to artificial,” IEEE Trans. Ind. Electron., vol.
58, no. 8, pp. 3160–3167, Aug. 2011.

[19] S. Agrawal, Y. Dashora, M. K. Tiwari, and Y. J. Son, “Interactive
particle swarm: A pareto-adaptive metaheuristic to multiobjective op-
timization,” IEEE Trans. System, Man, Cybern,, vol. 38, no. 2, pp.
258–277, 2008.

[20] S. Wang, J. Watada, and W. Pedrycz, “Value-at-risk-based two-stage
fuzzy facility location problems,” IEEE Trans. Ind. Inform., vol. 5, no.
4, pp. 465–482, Nov. 2009.

[21] G. Guo and Y. Shouyi, “Evolutionary parallel local search for func-
tion optimization,” IEEE Trans. Syst., Man, Cybern., vol. 33, no. 6, pp.
864–876, 2003.

[22] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Conver-
gence properties of the Nelder-Mead simplex method in low dimen-
sions,” SIAM J. Opt., vol. 9, no. 1, pp. 112–147, 1998.

[23] F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm
with adaptive parameters,” Comput. Optim. Appl., May 4, 2010.

[24] Torczon, “V.: Multi-directional search: A direct search algorithm for
parallel machines,” Ph.D. dissertation, Rice Univ., Houston, TX, 1989.

[25] M. Manic and B. M. Wilamowski, “Random weights search in com-
pressed neural networks using overdetermined pseudoinverse,” in Proc.
IEEE Int. Symp. Ind. Electron. 2003, 2003, vol. 2, pp. 678–683.

[26] N. Pham and B. M. Wilamowski, “Improved Nedler Mead’s simplex
method and applications,” J. Comput., vol. 3, no. 3, pp. 55–63, Mar.
2011, 2011.

[27] C. J. Chung and R. G. Reynolds, “Function optimization using evolu-
tionary programming with self-adaptive cultural algorithms,” in Proc.
SEAL’96 Selected Papers from the 1st Asia-Pacific Conf. Simulated
Evol. Learning.

[28] J. J. More, B. S. Garbow, and K. E. Hillstrom, “Testing unconstrained
optimization software,” ACM Trans. Math. Softw., vol. 7, no. 1, pp.
136–140, 1981.

[29] J. T. Betts, “Solving the nonlinear least square problem: Application of
a general method,” J. Opt. Theory Appl., vol. 18, no. 4, pp. 469–483,
1976.

[30] K. M. Bryden, D. A. Asklock, S. Corn, and S. J. Wilson, “Graph-based
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 10, no. 5,
pp. 550–567, Oct. 2006.

600 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 4, NOVEMBER 2011

[31] J. D. Hewlett, B. M. Wilamowski, and G. Dundar, “Optimization using
a modified second-order approach with evolutionary enhancement,”
IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3374–3380, Sep. 2008.

[32] C. J. Price, I. D. Coope, and D. Byatt, “A convergent variant of the
Nelder-Mead algorithm,” J. Opt. Theory Appl., vol. 11, no. 3, pp. 5–19,
2002.

[33] L. Nazareth and P. Tseng, “Gilding the Lily: A variant of the
Nelder-Mead algorithm based on golden-section search,” Comput.
Optim. Appl, vol. 22, no. 1, pp. 133–144, 2002.

Nam D. Pham (S’08) received the M.S. degree
in electrical engineering from Auburn University,
Auburn, AL. Currently, he is working towards the
Ph.D. degree in electrical engineering at the Auburn
University.

He is a Research Assistant with the Department
of Electrical and Computer Engineering, Auburn
University. His main interests include numerical
optimization, neural networks, database systems,
and network security.

Aleksander Malinowski (M’93–SM’00) received
the M.S. degree in electronics from the Gdansk Uni-
versity of Technology, Gdansk, Poland, in 1990 and
the Ph.D. degree with highest honors in computer
science and engineering (also received the Binford
Memorial Award) from the University of Louisville,
Louisville, KY, in 1996.

He is an Associate Professor at the Department of
Electrical and Computer Engineering, Bradley Uni-
versity, Peoria, IL. Before he was visiting with the
University of Wyoming, and also briefly taught at the

Gdansk University of Technology. He is the author of six journal papers, six
book chapters, oen solution manual, and 47 other refereed publications. The
areas of his main interests include networked embedded systems, microcon-
troller Linux, autonomous mobile navigation, and computational intelligence.

Tomasz Bartczak received the M.Sc. degree from
the Faculty of Electrical and Computer Engineering,
University of Technology, Rzeszów, Poland, in 1998.

In 1998, he joined the Department of Electronics
and Telecommunications, University of Information
Technology and Management, Rzeszów, Poland. His
teaching and research interests includes operating
systems, computer networks, and architectural
systems development. He currently works on the
improvement of the computer network.

