
ECEx70 Fall 2022 - Exam No. 3 – Instructor: Dr. Malinowski 1 of 4

Name: _key_
PLEASE PRINT CLEARLY

ECE x70 Exam No. 3 (100pts. - 25% of the final grade)

General Remarks
This is in-class one-hour-long exam. You can use your notes, textbook, and any existing Web-based resources. You can use
a lab or your own computer but must not use a cell phone. You must not communicate with other people or post the
questions on an Internet forum. Provide a concise answer and to the point for maximum credit. Answers that are too long
take too much time and may indicate that the author is unable to rank the importance of facts.

DL: ___ ERR: ___ PTS: ___
DL – exam difficulty level (adjustment), ERR – exam errors, PTS – exam points.

Problem 1 (25pts.) – Numerical complexity and operations in our examples
Analyze the code and show what it does by showing what is stored in each variable when the code is run.
Use ‘-’ to indicate that the data container is empty and nothing valid is stored at a time. STL library is used.

list<int> L; list<int>::iterator IT;

Consider the following fragment of code:

L.push_back(1); L.push_front(2); L.push_front(3); L.push_back(4);

The list contains: _3_2_1_4_________________

Now assume that the list contains the following data: 1 2 3 4

IT = L.begin(); ++IT; IT++; L.insert(IT, 5); ++IT; ++IT; L.insert(IT, 6);

The list contains: _1_2_5_3_4_6_____________

Now assume that the list contains the following data: 1 2 3 4 5 6

IT = L.begin(); IT++; ++IT; IT=L.erase(IT); L.erase(IT);

The list contains: _1_2_3_6_________________

Now assume that the list contains the following data: 1 2 3 4

for(auto II=L.rbegin(); II!=L.rend(); ++II) cout << ‘ ’ << *II;

What is printed: _4_3_2_1_________________

// each missing, extra or misplaced number costs 1p., except the reverse of the last answer costs 4p.

ECEx70 Fall 2022 - Exam No. 3 – Instructor: Dr. Malinowski 2 of 4

Question 2A (5p.) – Numerical Complexity – Big O notation
Dr. Wangs’s crazyfly robot armada on average maps BECC Control Lab in about 220 seconds before returning to
their dock station. After moving it to a basketball court in the Markin Center that is approximately three times
larger in each direction it was determined that the armada needs about 2820 seconds to perform the same
operation. What is the most likely the numerical complexity of that mapping process with respect to the room
linear dimension as N? Docking flying robots takes always the same extra time that can be almost neglected and
it is included in the measured time. (Note: the story is made up, do not try to reason the complexity based on
the task) Circle the closest answer:

2n n5 n4 n3 n 2 *s qrt(n) n 2 *l og(n) n2 n*sqrt(n) n*log(n) n*sqrt(n) log(n) 1 0

Question 2B (5p.) – Numerical Complexity – Time estimation
Dr. Wangs’s crazyfly robot armada on average maps BECC Control Lab in about 220 seconds before returning to
their dock station. Assuming that the numerical complexity of mapping rooms on the same floor in respect to
the room liner dimensions is O(n2) how much time it would take to map BECC that is approximately four times
larger? Circle the closest answer:

more 100,000 50,000 30,000 20,000 10,000 5,000 3,000 2,000 1,000 300 200 100

Question 2C (15p.) – Numerical Complexity and STL Library functionality
Based on your knowledge of the data container implementations of vector<T> (SimpleVector), list<T>
(homework 12), and deque (CircularBuffer) circle the closest numerical complexity for the member functions of
these containers. Assume N is volume of data held in a container.

V.insert(V.end(), x) where V is vector<T> 1 n n2 more

V.insert(V.begin(), x) where V is vector<T> 1 n n2 more

V.clear() where V is vector<T> 1 n n2 more

L.insert(L.end(), x) where L is list<T> 1 n n2 more

L.insert(L.begin(), x) where L is list<T> 1 n n2 more

L.clear() where L is list<T> 1 n n2 more

// Note: these particular questions should not be semester-dependent

// Questions referring to homework or class examples may change answers

ECEx70 Fall 2022 - Exam No. 3 – Instructor: Dr. Malinowski 3 of 4

Problem 3 (25pts.) – Understanding linked-list-alike structures
Analyze the implementation of the two dimensional linked-list-alike data structure and then implement
requested functions according to the comments included with each of them.

//ILLUSTRATION OF THE IDEA:

//CODE:
class myLink {
friend class myList;
friend class myIterator;
 myLink *U, *D, *L, *R;
 int X;
public: void erase(…);
};

class myList {
 myLink *start;
};

class myIterator {
 friend class myList;
 myLink *current;
public:
 myIterator(myLink* x) : myLink(x) {}
 void up() const;
};

// remove the link pointed by the iterator from the grid and deallocate its memory
// note that you may be erasing an edge node. you are not erasing placeholder node
void myList::erase(const myIterator& it) { // answer worth 20 points

 if (it.current->U) it.current->U->D = it.current->D;

 if (it.current->D) it.current->D->U = it.current->U;

 if (it.current->L) it.current->L->R = it.current->R;

 if (it.current->R) it.current->R->L = it.current->L;

 delete it.current;

 // each error within a line of code, or extra line of code costs 1 point
 // consistently the same error across all commands costs 4 points
}
// make an iterator point to one element up (assume the link up is valid)
void myIterator::up() { // answer worth 5 points

 current = current->U;

}
// Note: problem introduced previously in class during review,
// questions for more functionality of this structure to come in future tests

ECEx70 Fall 2022 - Exam No. 3 – Instructor: Dr. Malinowski 4 of 4

Problem 4 (25pts.) – Algorithm implementations in code
Complete implementation of the code to compute a short average of data sequence as indicated by xxxx in
the example figure. The data is stored in a circular buffer like one in the recent homework assignment. For
full credit add only as little additional variables as absolutely necessary. Utilization of the already defined
variables can be determined by analyzing the code of the provided storeNext(..) function. Everything is
provided in a class template notation. Assume that, unlike in the homework, you cannot initialize sum using
value of 0 (i.e., “= 0;”) assignment. The actual values of s_av2 and s_av1 may vary from the figure below.

template <typename Tdata, size_t s_av2, size_t s_av1, size_t s_mem>
class TrendPredictor {
private:
 size_t strt2, strt1, next, size _______________ ; // blanks are optional
 Tdata buffer[s_mem];
public:
 TrendPredictor():strt2(0),strt1(0),next(0),size(0) _______________ {}
 bool ready() const { return(size>=s_av2); }
 void storeNext(const T& x) {
 buffer[next] = x;
 ++next; if (next==s_mem) next=0;
 if (size<s_mem) ++size;
 if (size>s_av1) { ++strt1; if (strt1==s_mem) strt1=0; }
 if (size>s_av2) { ++strt2; if (strt2==s_mem) strt2=0; }
 }
 T average_2() const {
 T sum; // for full credit try not to use: sum=0;
 sum = buffer[strt2]; // A – sum initialization
 size_t ndx = (strt2 + 1) % s_mem; // B – start correctly
 while (ndx != strt1) { // C – correct stop
 sum = sum + buffer[ndx]; // D – keep adding up
 ndx = (ndx + 1) % s_mem; // E – advancing correctly
 }
 sum = sum / (av1 - av2); // F – finish computing average
 return(sum);
 }
};
// 4 points each A B C D E F, 2 points for “=0”, 1 point extras
// Note: with -2p for =0 this collapses to short average with strt1 as next
// A task to do in your homework assignment – assesses your work on homework

	Name: _key_ PLEASE PRINT CLEARLY
	ECE x70 Exam No. 3 (100pts. - 25% of the final grade)
	General Remarks

	DL: ___ ERR: ___ PTS: ___
	Problem 1 (25pts.) – Numerical complexity and operations in our examples
	Question 2A (5p.) – Numerical Complexity – Big O notation
	Question 2B (5p.) – Numerical Complexity – Time estimation
	Question 2C (15p.) – Numerical Complexity and STL Library functionality
	Problem 3 (25pts.) – Understanding linked-list-alike structures
	Problem 4 (25pts.) – Algorithm implementations in code

